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1 Introduction

The strong systematic transverse coupling observed in the Tevatron is believed to have developed
over time as fiberglass spacers used in the magnet design have crept into a compressed state during
the lifetime of the accelerator. Below we present a simple model of the Tevatron dipole magnet
using the method of magnetic images to calculate the skew quadrupole coefficient, a1, which would
develop due to a displacement of the superconducting coil with respect to the iron yoke of the
magnet. A numerical estimate based on the Tevatron dipole magnet parameters along with the
Smart Bolt measurements made of Tevatron magnets in the tunnel produce a result consistent with
beam observations. The influence on a1 of the coil placement within the iron yoke is well known[1]
– during construction of the Tevatron magnets, the coil was positioned in order to zero this variable
while on the magnet test stand. The purpose of this document is to advance the understanding of
this effect in a straight-forward way.

2 Smart Bolt Measurements and Coil Displacement

A (very) schematic diagram of the Tevatron dipole magnet suspension is shown in Figure 1. The
coil is held in place by an array of four bolts spaced along the magnet, the top two of which are
spring-loaded (Smart Bolts). Fiberglass spacers, made of G11 material, are used at the interfaces
of the warm and cold regions to minimize heat leak. The conjecture is that these spacers have
slowly compressed over time. If the spacers at each of the four points shown in the figure have had
their total lengths compressed by an amount δ, then the springs in the Smart Bolts will relax by
an amount 2δ. In the recent tunnel measurements, the average displacement of the Smart Bolts
for 18 magnets was observed to be 2δ ≈ 6 mil (0.15 mm). As indicated in Figure 2, this translates
into a vertical coil movement relative to the iron yoke of the magnet of an amount δ

√
2 = 4.2 mil

(0.11 mm).

1



d      d

d √2

Figure 1: Schematic of cold mass support system in Tevatron dipole magnet.
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Figure 2: Coil displacement deduced from Smart Bolt measurement.

3 Simple Model of Tevatron Dipole with Iron Yoke

To estimate the effects of a vertical coil displacement we begin with a simple model of a supercon-
ducting magnet with a coil centered inside an infinitely large iron yoke. The geometry of the coil
can be approximated by the intersection of two cylindrical regions of uniform current, each with
radius c, as shown in Figure 3 – the result of a famous textbook problem in electromagnetism.[2]
The current in the cylinder on the left moves out of the page, current on the right moves into the
page. By superposition, there is no current in the central overlap region (best for particle propa-
gation!) and the magnetic field in this region is a pure dipole field pointing vertically upward of
strength

By =
µ0jd

2
where j is the current density, and d is the distance of separation between the centers of the two
circles (also the maximum thickness of the “coil”). We note for future reference that the total
current in each circle is ±I = ±πc2j.
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Figure 3: Dipole field generated by two overlapping current regions.

We next must add in the fact that the coil is placed inside an iron yoke of cylindrical cross
section with radius R. Since the field within the magnet is independent of longitudinal position,
the magnetic field is equal to the gradient of a scalar potential. The iron boundary is a magnetic
equipotential surface and as such the method of images can be applied to compute the contribution
of the magnetic field due to the iron onto the central field. For example, it is known that a line
charge inside a grounded cylinder of radius R located a distance a from the center will have an
image line charge of opposite sign located a distance R2/a from the center of the cylinder. The
field within the cylinder can be computed by adding the fields due to the interior line charge with
the field due to its image. Since the 2-D magnetostatic problem relies on solutions to Poisson’s
equation just as in the electrostatic case, the same principle can be applied. Here, however, the
magnetic image currents are of the same sign as the interior current. (The iron enhances the field.)
And so our situation is that shown in Figure 4. In this figure, the large circle is the boundary of
the iron yoke, and the two small circles inside indicate the centers of the two overlapping current
regions described earlier. The open circles indicate the locations of the images.

II -I-I

R

±d/2

R2/(d/2)

ra

a

I      -I

I -I

R

R2/a

y

By
(i)

q

a D

 d/2

a
r

(R2/a) cosq

(R
2 /a

) s
in

q 
+ 

(y
 - 

D
)

Figure 4: Image currents in the iron yoke.

The images will be very far away. Since we are talking about units of a measured in mils, and
R measured in inches, the images are about 1000 inches distant. Thus, the image of each of the
two intersecting cylinders making up the coil can be treated as a line current of value I = ±πc2j.
The field at the center of of the coil due to the images will be vertical and is given by

B(i)
y = 2

µ0I

2π[R2/(d/2)]
=

µ0jd

2

( c

R

)2
.
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Therefore, the total field due to the coil and the iron yoke will be

By(x = 0, y = 0) ≡ B0 =
µ0jd

2

[
1 +

( c

R

)2
]

.

For the dimensions of the Tevatron we note that the ratio of the average coil radius to the yoke
radius is approximately 50%. Thus, the iron enhances the central field by about 25%. (According
to the Tevatron Design Report[3], this value is “a little more than 20%.” For the final magnet
design, the value is reported as ∼ 18%.[4] Here, the details of the coil and the finite extent of the
iron likely come into play.) For Tevatron magnet parameters we see that

By ≈
(4π × 10−7T ·m/A)(500A/mm2)(10mm)(103mm/m)

2
· (1.25) ≈ 4 T.

4 Development of a1 due to Coil Displacment

We next look at the situation in which the center of the coil is displaced vertically relative to the
center of the iron yoke. Since we want to expand the resulting magnetic field about the coil center
it is easiest to consider the iron yoke raised by a distance ∆ relative to the coil. The geometry is
presented in Figure 5. From the figure one can deduce the following:

B(i)
y (r) = 2

µ0I

2πr
sinα

a2 =
d2

4
+ ∆2

r2 =
R2

a
cos θ +

[
R2

a
sin θ + (y −∆)

]2

Therefore, along x = 0, the magnetic field due to the images will be vertical and have strength

B(i)
y = 2

µ0I

2πr

R2

ar
cos θ

= 2
µ0I

2πr2

R2

a

d

2a

=
µ0(πc2j)d

2πr2

R2

a2
=

µ0jd

2

( c

R

)2 R4

a2

1
r2

Next, we wish to write the 1/r2 factor in terms of the vertical coordinate y to be able to look
at the gradient of the field ∂By/∂y. We note that

r2 = (R2/a)2 + 2(R2/a)(y −∆) sin θ + (y −∆)2

from which we write

r2/(R2/a)2 = 1 + 2(a/R2)(y −∆)(∆/a) + (y2 − 2y∆ + ∆2)(a/R2)2

= 1 + 2
∆
R2

y − 2∆
a2

R4
y + . . .
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Figure 5: Geometry of the iron yoke being displaced a distance ∆ from the center of the coil. The
magnetic images are now below the midplane, generating a top-down asymmetry (and a “skew”
field).

So, to close approximation, since R/a � 1,

R4

a2

1
r2

= 1− 2
∆
R2

[
1−

( a

R

)2
]
· y ≈ 1− 2

∆
R2

y.

The total field due to the coil plus the off-centered iron yoke is thus

By(x = 0) =
µ0jd

2
+

µ0jd

2

( c

R

)2
(

1− 2
∆
R2

y

)
(coil) (images)

=
µ0jd

2

[
1 +

( c

R

)2
]
− 2

µ0jd

2

( c

R

)2 ∆
R2

y

= B0 − 2B0
(c/R)2

1 + (c/R)2
∆
R2

y

The usual field expansion in terms of normal and skew multipole coefficients is

By + iBx = B0 + B0

∑
n

(bn + ian)(x + iy)n
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and so for our case the skew quadrupole moment, a1, is found from

a1 = − 1
B0

(
∂By

∂y

)
(x=0)

.

From the result of our derivation above, this gives

a1 = 2
(c/R)2

1 + (c/R)2
∆
R2

as the value of a1 due to the coil being displaced vertically downward by a distance ∆. For a
positive value of ∆, the coil is closer to the bottom of the iron yoke, making the field stronger
below the coil center than above the coil center. Thus, the gradient ∂By/∂y will be negative, or a1

will be positive.

The measurements described in Section 2 implied that the centers of the coils of the Tevatron
dipoles may have crept vertically by an average distance of 0.0042 in. From the Tevatron Design
Report the average coil radius of a Tevatron dipole magnet is approximately 1.84 in. The yoke
radius is 3.77 in. Using the above result, the change in a1 generated by a 1 mil displacement would
be

a1/mil = 2
(1.84/3.77)2

1 + (1.84/3.77)2
10−3in

(3.77 in)2
1

mil
= (0.27× 10−4/in)/mil

which is consistent with the value quoted in [1]. For 4.2 mil, the induced a1 = 1.1× 10−4/in, which
is consistent with the beam measurements taken last month.[5]

Special thanks goes to Don Edwards for discussions of the calculation and making helpful
suggestions to the document.
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